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In this paper, we analyze the problem of the semidiscretized approximation for the 
initial boundary-value problem of the wave equation. Point-wise convergence properties 
for the propagation of discontinuities are investigated via a uniformly valid asymptotic 
expansion. An approximate error analysis using matched asymptotic expansions is 
constructed and compared with the asymptotic expansion of the exact solution. 

Dispersion and Gibbs phenomenon are inherent in difference approximations 
of hyperbolic partial-differential equations with discontinuous solutions. Their 
effects, smearing of the discontinuity and subsequent generation of oscillations 
behind the discontinuity, have been studied by a number of investigators [l-4]. All 
these studies are concerned with Cauchy problems and with the asymptotic 
behavior of the solution in the difference approximation. Consequently, they yield 
more precise estimates than those obtained by the use of functional analysis [5,6]. 

For initial boundary-value problems, Orszag and Jayne [7] postulated that it is 
possible to analyze local error by replacing actual boundary and initial conditions 
by simpler conditions that reproduce the proper discontinuity. Their analysis of a 
semidiscretized approximation was shown by Chin 181, using matched asymptotic 
expansion techniques to account for the first truncation-error term in a Taylor 
series expansion of the central difference quotient. 

In this paper, we analyze the problem of the semidiscretized approximation for 
the initial boundary-value problem of the wave equation, 
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Here, the spatial derivatives are approximated by a formally second-order-accurate 
central difference quotient in a stagger grid scheme. The resulting system of linear 
ordinary differential equations is solved exactly by Laplace transform techniques. 
A fundamental semidiscretized wave solution is found and utilized in the study of 
propagation of discontinuities. Pointwise convergence properties are investigated 
via a uniformly valid asymptotic expansion. An approximate error analysis using 
matched asymptotic expansion will be constructed and compared to the asymptotic 
expansion of the exact solution. 

The principal results are: 

(1) The sequence of approximations of the semi-discretized analog converges 
in the sense of Gibbs phenomenon as dx -+ 0 to the solution of the wave equation 
for a propagating discontinuity; 

(2) The dispersive behavior giving rise to the Gibbs phenomenon is due 
essentially to the first truncation-error term in a Taylor series expansion of the 
difference quotient; and 

(3) The higher-order terms in the Taylor expansion affect only the phase of 
the error waves. The relative phase error due to the higher-order terms is at most 
4%. 

PROBLEM DEFINITION 

Consider the following wave propagation problem (WPP): 

at.4 a0 
at=Qg 

and 

for 

au au 
at=Cz 

x, BED = (x, t IO <x < L, t > 0), 

(la) 

(1’3 

with boundary conditions, 

44 0 = m, 4% 0 = ido, t > 0, 

and homogeneous initial conditions. 
We summarize the solution of the above WPP in the following representation 

theorem. 
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THEOREM 1. The solution of the WPP is given by 

+g*[t- (2n + 1) L - x c ]-g*[t- (h+lc)L+x]l, (2) 

where 

Remark. At any time, there are only four terms that are nonzero. The physical 
interpretation of each term is self-evident. 

SEMIDISCRETIZED APPROXIMATION 

Let the domain D be partitioned into strips such that 

and 
Ax = L/N 

xk = kdx, k = 0, 1, 2 ,..., N. 

Following Courant, Friedrichs, and Lewy [9], we define the grid functions 

u&) = u(kAx, t), k = 1, 2 ,..., N - 1, 

and 
arc-(m)(t) = d(k - 4) Ax, 4, k = 1, 2 ,..., N. 

Next, each spatial derivative is replaced by its central difference approximation to 
obtain 

c du, 
dt - TX (%+(1/2) - Uk-wd, k = 1,2 ,..., N - 1, 

h/z - = & bl - f(t)19 dt 

duk+(m) 
dt = & G&+1 - uJ9 k = 1, 2 ,..., N - 2, 

(3) 

and 
&v-c,/,, 

dt = -& [g(t) - UN-II. 
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The initial conditions are 

z&(O) = 0, k = 1, 2 ,..., N - 1) 

%-l/2(0) = 0, k = 1, 2 ,..., N. 

Equations (3) may be combined to yield 

ii = Au + b, 

where 

A= -& ( ) 
2 

and 
! W-~)X(N-~) 

(4) 

Equation (4) is a system of second-order linear-ordinary differential equations. 
This system is fundamental to studying the dynamics of a lattice of point masses, 
each connected to its nearest neighbors by Hookean springs [IO]. While the solution 
of Eq. (4) may be obtained in terms of contour integrals [ 11, 121, the representation 
of the solution does not offer a direct comparison with the solution of the WPP 
(Theorem 1). The present derivation uses Laplace transform techniques and a 
particular form of the transformed inverse matrix elements. The resultant solution 
is isomorphic to the solution of the WPP: 

THEOREM 2. The solution of the semidiscretized analog of the WPP is 

uk(t) = f (f It - & (2Ni + k)/ -f It - $ [2(i + 1) N - k]/ 
i=O 

+ g It - 2 [(N(2i + 1) - k]l - g It - -$ [N(2i + I) + k]/) , 
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where 

and Jzm( y) is the 2m-order Bessel function of the first kind. 

Remark. The fundamental wave solution here is 

and, therefore, we expect this solution to converge to the exact analytic solution 

in some sense as Ax + 0. 

RATE OF CONVERGENCE ESTIMATES 

Consider the semidiscretized wave solution 

uk(t) = 2k JO’f(t - T) + d7. 

Clearly, the rate of convergence must depend on the smoothness of the function 
f(t) (see Hedstrom [l]). Here, smoothness is measured relative to w. To see this, we 
let t’ = wt and thus, 

In this paper, only the propagation of the discontinuity is considered, i.e., 

f(t) = fw, 

the Heaviside function. The exact solution to the WPP is 

u(x, t) = H[t - (x/c)]. 

In this case, Eq. (5) becomes 

(5) 

(6) 
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and can be expressed as a sum of Bessel functions [ 131, 

k-l 

Vk”(f) = 1 - J,(i) - J*$.(f) - 2 1 J*#). 
?I=1 

The properties of the solution Eq. (6) will be stated in the following series of 
lemmas. 

LEMMA 1. The v,“(i) is an oscillatory function. The local maxima and minima 
correspond, respectively, to the odd and even zeros of&(t). 

LEMMA 2. For a fixed value of t/2k as k + co, v kH(t) has the following uniformly 
valid asymptotic expansion, 

v*“(f) = i$ + j’” A,(-x) dx + O[(2k)-2/3], (7) 
0 

where 

for 

co = (2k)*13 {#[(f12 - 1)li2 - tan-l (p2 - 1)1/2]}2/3, 

and 

/3 = ctlxl, = i/2k > 1, 

5, = -(2k)2/3 1; [In * + Cl r @)l” _ (1 _ p)1/2]/2’3, 

for /3 < 1. 

Proof. The detailed construction of the uniformly valid asymptotic expansion 
will be given in the Appendix. A brief sketch of the constructive method will be 
discussed here. The essential point is the use of the integral representation of 
Bessel functions of integer order, 

so that steepest descent methods can be utilized. After some algebraic manipula- 
tions and interchanging integrations, we obtain 

vkH(f) = 1 + & J:” ei(rsrn E-M) cot 4 de 
5712 

1 
s 

n/2 -- 
2rri -n12 

ei(l sin E+2kC) cot 4 de. 
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A straightforward application of Laplace’s method to the second integral gives 

&(f sin f+27~:63 cot ( dz = k + 0[(2k)-11. 

For the first integral, the saddle points are symmetrically displaced, i.e., 

f, = fcos-l(2kp) 

and, therefore, as 2k/f + 1, the two saddle points coalesce. Moreover, the point of 
confluence is also a pole. To obtain a uniformly valid asymptotic expansion, the 
method of Chester, Friedman, and Ursell [14], which takes into account 
confluencing saddle points, is modified to include the contribution of the pole. This 
completes the construction. 

The graph 

I 
&I 

Ai dx 
0 

vs lo for -8 < co < 10 is given in Fig. 1. 

-8 -6 -4 -2 2 4 6 8 10 

-0.2-- 
-113 50 

-- 

FIG. 1. The integral of the Airy function. 

For 1 co 1 > 1, the following asymptotic expansions are known [13]. 

s (0 
0 

,4,(-x) dx - 5 - 

and 

s 
IL3I 1 1 

0 
-4(x) dx = 3 - m2 I lo I-‘/’ ev ( - f I 50 lP2) * 

(84 

(W 
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Remark. The analysis leading to (7) is valid for k -+ co. From the definition of 

k = x,/Ax, 

two interpretations are possible. For xp fixed, k + co implies Ax + 0. This case 
is concerned with the rate of convergence and the character of the limit function. 
On the other hand, for Ax fixed, k + co implies xg + co. As a byproduct, there- 
fore, an estimate is obtained of the dispersive effect at large distances, and thus 
long times. 

The rate of convergence estimates follows immediately from Lemma 2 and 
Eq. (8) and, therefore, will be stated without proof. 

THEOREM 3 (Gibbs phenomenon). Given any E > 0 and 6 > 0, as small as we 
please, 

(1) there exists a Ax, , such that 

1 vk”(t; Ax,) - 0.00 I < 6 
and 

1 - (&/x3 > E; 

(2) there exists a Ax, , such that 

I v&t; Ax,) - 1.00 I < 6 
and 

(Cj/Xk) - 1 > E. 

(3) Thus, let Ax = max(Ax, , Ax,); then 

6 < I vkH(t; Ax) - H[t - (x&)11 < g + J?4,(-x) dx = 1.2747 
0 

and 
I(Cf/Xk) - 1 I < E. 

For the case of Ax fixed, we can estimate the dispersive effect for xg + co by 
examining the location of the first maximum relative to the wave front. To do so, 
we make use of Olver’s results on uniformly valid asymptotic expansions of Bessel 
functions of larger order [15] for estimating the location of the first zero. In terms 
of (x, t) variables, we have 

ct, = xk + a(Ax)2/3 xi13A, + (3/40)(/f, Ax~/~)~ xi1j3 + a.. , 

where A, = 2.3381 is the first zero of the Airy function Ai(- y). This clearly 
shows that the first maximum spreads as x2” away from the wave front. 
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ERROR ANALYSIS BY THE METHOD OF MATCHED ASYMPTOTIC EXPANSIONS 

In this section, we shall show that the method of matched asymptotic expansions 
is a viable technique for obtaining maximum norm-error estimates. The error 
wave equation analyzed is obtained by truncating terms higher than Ax2 in a 
Taylor series expansion of the difference quotient, and then solved by the method 
of matched asymptotic expansions. The solution is compared with the asymptotic 
analysis in the previous section. This comparison yields the relative importance of 
the higher order terms in the Taylor expansion of the difference quotient. The 
result shows that the higher-order terms contribute only toward the phase of the 
error wave far from the wave front, and a maximum relative error of 4% in the 
phase is obtained. 

The problem to be analyzed is the propagation of a step discontinuity considered 
in the last section, i.e., 

24(x, t) = H[t - (x/c)]. 

Following Chin [8], we expand u(x, f Ax, t) of Eq. (4) in a Taylor series about 
(xk , t) and neglect terms with orders higher than Ax2 to obtain 

a‘% 
I 

PW 
p=c27g --. 

+ ‘4;” ;: 1 
4 (9) 

Here, W(X, t) denotes the approximate solution. Equation (9) will then be solved by 
the method of matched asymptotic expansions. 

The detailed construction of the matched asymptotic expansion parallels that 
of Chin [8] and, therefore, will be omitted. However, a brief description will be 
given. Essentially, an outer solution valid outside the neighborhood of the wave 
front (X = t) is matched to an inner solution valid in the neighborhood of the 
wave front. The inner expansion is the solution of the equation 

a% i aw 
zig--- 24 at4 ’ 

where the stretch variable is 

5 = (c/Llx)2/3 [t - (x/c)]. 

The resultant matched asymptotic expansion is 

w(x, t: Ax) = 3 + J2i’t”BAi(-~) d7 + o[(Llx/c)q. 
0 

(10) 

Comparisons of Equations (10) and (7) 
The difference between (10) and (7) is in the limit of integration, or the phase of 

the error wave, 
(A = 2E/W = 2(x/flx)'l" (et/x)-'13 [(CT/X) - I], (114 
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as compared to 

5= 
(2k)“‘” 1; [(/3” - 1) ljs - tan-1 (p - 1yy3 

I 
, j3 > 1, 

-(2k)zP 1; [In ’ + Cl i p2)1’2 - (1 - ,371ia]12’3, 
@lb) 

fl < 1. 

Noting that et/x = /3 and xk = kdx, we have the ratio of the two integration 
limits given by 

5 3313 ,913 
cd- _--- 2 16 _ 1 [(p - 1)li2 - tan-l(P2 - 1)1/2]2/3, 82 1. 

Examining the behavior of this ratio, we find that 

I 
1 + U/30)@ - 1) + a@ - 1121, B-l<l, 
(32/3/w - [b - 3)/31(w) + ou/83>, B> 1. 

Moreover, c/CA is a monotonically increasing function of /3; therefore, we conclude 
that 

1 < t/S/, < 32/3/2 = 1.040042, (12) 

for 1 < /? < co. Similar results hold for 0 < /? < 1. The ratio of the phases, 5/tA is 
shown in Fig. 2. 

FIG. 2. Ratio of the phases. 
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Conclusions 

The results, namely a comparison of the approximate solution (10) and the 
asymptotic expansion of the exact solution (7) for rlx -+ 0 in the case of a pro- 
pagating step discontinuity, clearly demonstrate that: (1) the dispersive character 
of the semidiscretized solution is primarily due to the first-truncation-error term, 
i.e., @I~)~/12 a4w/W, and (2) the method of matched asymptotic expansions is a 
viable technique for analyzing local truncation error. 

The application of the method of matched asymptotic expansions for problems 
with variable coefficients is more detailed, but poses no essential additional 
problem. The treatment of nonlinear problems would appear to involve nontrivial 
extensions of the technique. In either case, in view of the sharpness of (12) the 
applicability of the method to local truncation-error analysis used in this section 
seems to hold great promise. 

APPENDIX 

In this appendix, we develop a uniformly valid asymptotic expansion for the 
integral 

&t sin t-2kC) cot 5 d( (A-1) 

for k + co. The method of Chester, Friedman, and Ursell is modified in light of 
Bleistein’s procedure for finding uniform asymptotic expansion with the stationary 
point near algebraic singularity [ 161. 

Analysis. 

The transformation 

sin 5 = r], -lGrl<l, 

substituted into (A. 1) gives 

ei2kW-sin-1n) &,I,,, 

where 
/3 = t/2k. 

The saddle points are located at 

(A.21 

7) = & [l - (1//32)]‘1”. 
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As /3 + 1, q + 0 and the confluence of two saddle points occurs. Moreover, r] = 0 
is a pole of the integrand. For the sake of convenience, we give details only for the 
case /3 > 1. 

Following Chester, Friedman, and Ursell, we perform the following change of 
variables, 

j37j - sin-’ q = &9) 2.4 - ku”. 64.3) 

Here, <(/I) is determined by requiring the transformation (A.3) to be regular and 
one-to-one. This implies that d7/du # 0 or co, and 

I * - &I) - 242. du - 

Thus, we may have 

or 

gj3) - u2 = 0 

only at the saddle points, 

7 = *[l - (l#P)]i/2. 

Therefore, we obtain 

(A.4) 

&!3) = {j[(/P - 1)lj2 - tan-l (p2 - 1)1/2]2/3}, j? 3 1. (A-5) 

In the neighborhood of each point in the 7 plane, (A.3) is locally one-to-one 
analytic in all veriables (see Bleistein [ 171). 

Substituting (A.3) into (A.2), we have 

(A-6) 

where ii is the solution of 

$43 - [u + [/3 - @r/2)] = 0. 

To evaluate (1/7)(d7/du), we must assume that (A.3) is one-to-one analytic where 
required. In contrast to Chester, Friedman, and Ursell, the method of Bleistein [ 171 
is applied to generate the coefficients for the expansion of (u/7)(d7/du). We set 

$2 = a, + a,u + u2u2 + u2(u2 - 5) G,(u). 

The coefficients a,, , a, , a2 , and G,(u) must be determined. 
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Evaluating (A.7) at u --+ 0 and u = -&c1f2, we obtain 

a, = lim 4f_ J!T 
( 1 u-a 7j du ’ 

It follows from L’Hospital’s rule that 

a,= 1, a, = 0, and u2-p!&.+)lA~ 

Inserting (A.7) into (A.6), we have 

1 22 
I=%2 -c s 

ei(2k)Ku-1/3us) (; + .2,) du 

+ & s_“, &2~)(tu-l/3u3) ~(9 - 5) G,(u) du. 

1 . 1 

(A.@ 
The last integral may be rewritten after integration by parts to yield 

1 
2&W 

ei(2kh.)Ku-1/3u3) &l@) li 

4 

1 -- 
f 

li &(2k)(Cu-l/3u3) [G,(u) + U&‘(U)] du. 
2n-(2k) --ti 

Once again, we set 

G,(u) + uG,‘(u) = a”, + H,U + d2u2 + u2(u2 - 5) G,(u) 

and repeat the above procedure to generate recursively the desired coefficients. 
Next, we restrict our attention to the evaluation of the first two integrals of (A.8), 

which may be rewritten as 

(1 +u)dusin -u3- 5,~ t: 1) 
where 

to = (2k)2/3 5. 

Using the integral representation of the Airy function and integrating by parts, we 
have for B 2 1 

I= 1’” Ai dx - ; + & a2Ai'(-t) + 0 (&) . (A.9) 
0 
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For /3 < 1, the analysis is essentially the same, and we get 

5, = - 1; [In l + Cl; w2 - (1 _ p2)l,2]12’3 (2/y 

and 

1 = I”“’ 
0 

hCx) dx - d + (2Lj2,3 ~ a,&‘(l 50 I) + 0 ($) . 

In conclusion, we have 

I = S,i” Ai dx - a + 0 (&)“3, 

where 

(2/k)‘/” 1; [(/I2 - 1) 112 - tan-l (8” - f3 1)1P]~z’3, < 1, 50 = 

-(2k)2/3 1; [In 1 + (‘g W2 - (1 - p)l~]/*‘~, /3 < 1. 

The necessity of changing variables for /3 -C 1 reflects the change in the Debye 
contours for computing expansion of Bessel function of large order. 
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